References

Abadi, Martı́n, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. 2016. “Tensorflow: A System for Large-Scale Machine Learning.” In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), 265–83.
Allaire, JJ, and François Chollet. 2022. Keras: R Interface to ’Keras’. https://CRAN.R-project.org/package=keras.
Blaom, Anthony, Franz Kiraly, Thibaut Lienart, and Sebastian Vollmer. 2019. Alan-Turing-Institute/MLJ.jl: V0.5.3 (version v0.5.3). Zenodo. https://doi.org/10.5281/zenodo.3541506.
Chen, Tianqi, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu Cho, Kailong Chen, et al. 2022. Xgboost: Extreme Gradient Boosting. https://CRAN.R-project.org/package=xgboost.
Chollet, Francois et al. 2015. “Keras.” GitHub. 2015. https://github.com/fchollet/keras.
Fey, Matthias, and Jan E. Lenssen. 2019. “Fast Graph Representation Learning with PyTorch Geometric.” In ICLR Workshop on Representation Learning on Graphs and Manifolds.
Innes, Michael, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco Concetto Rudilosso, Neethu Mariya Joy, Tejan Karmali, Avik Pal, and Viral Shah. 2018. “Fashionable Modelling with Flux.” CoRR abs/1811.01457. https://arxiv.org/abs/1811.01457.
LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning.” Nature 521 (7553): 436–44.
LeCun, Yann, Corinna Cortes, and CJ Burges. 2010. MNIST Handwritten Digit Database.” ATT Labs [Online]. Available: Http://Yann.lecun.com/Exdb/Mnist 2.
Meyer, David, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel, and Friedrich Leisch. 2022. E1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://CRAN.R-project.org/package=e1071.
Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, et al. 2019. “PyTorch: An Imperative Style, High-Performance Deep Learning Library.” In Advances in Neural Information Processing Systems 32, 8024–35. Curran Associates, Inc. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, et al. 2011. “Scikit-Learn: Machine Learning in Python.” Journal of Machine Learning Research 12: 2825–30.
Schliep, Klaus, and Klaus Hechenbichler. 2016. Kknn: Weighted k-Nearest Neighbors. https://CRAN.R-project.org/package=kknn.
Simon, Noah, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. 2011. “Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent.” Journal of Statistical Software 39 (5): 1–13. https://doi.org/10.18637/jss.v039.i05.
Ushey, Kevin, JJ Allaire, and Yuan Tang. 2022. Reticulate: Interface to ’Python’. https://CRAN.R-project.org/package=reticulate.
Wright, Marvin N., and Andreas Ziegler. 2017. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R.” Journal of Statistical Software 77 (1): 1–17. https://doi.org/10.18637/jss.v077.i01.